PREPARATION AND PROPERTIES OF 3-CYANO PYRIDINE AD⁺, A NEW ANALOGUE OF NAD⁺

J.F.BIELLMANN and M.J.JUNG

Laboratoire de Chimie Organique Biologique, Institut de Chimie, 1 rue Blaise Pascal, 67-Strasbourg, France *

Received 17 January 1970

From a consideration of NAD⁺ and its known alcohol dehydrogenase-active analogues, it is seen that only those compounds having a C=O or C=S group in the 3-substituent and suspected on thermodynamic grounds of being active in redox systems catalysed by dehydrogenases have been tested, with the exception of I

which is active with LADH and YADH** [1]. It therefore appeared interesting to us to determine the possible activity of the analogue of NAD⁺ having a nitrile function in place of the amide group. The nitrile group participates in hydrogen bonding by means of the nitrogen lone pair of electrons [2], but the geometry of the hydrogen bonded system C—C≡N...H—X is different from the system

- * Laboratory associated with the Centre National de la Recherche Scientifique.
- ** Abbreviations:

3-cyano Py AD⁺: 3-cyano pyridine adenine dinucleotide; thio NAD⁺: thio nicotinamide adenine dinucleotide; LADH: the alcohol dehydrogenase extract of horse liver; YADH: the alcohol dehydrogenase extract of yeast.

It is thus evident that replacing the amide group of NAD⁺ by a cyano group will allow determination of the bonding site of NAD⁺. The exchange method (transglycosidation) used by Kaplan et al. [3], which is catalysed by DPNases extracted from animal tissue, cannot be used for the preparation of 3-cyano Py AD⁺. The latter is not surprising in view of the fact that 3-cyano pyridine is a weak base $(pK_a \simeq 1.45)$. It seems that the lower pK_a limit for exchange by DPNase extracts of beef spleen and pig brain is of the order of 3.1 [3, 4].

The facile preparation of thio-NAD⁺ proved useful for this preparation, since the thio-NAD⁺ could be converted to 3-cyano Py AD⁺ by silver or mercury (II) ions [5]. Experiments with mercury (II) chloride in the presence of primary amine [6] were unsuccessful with thio-NAD⁺ as substrate; on the other hand, thio-NADH was converted to 3-cyano Py ADH under these conditions, but a mixture of products resulting from secondary reactions was obtained. However, the use of silver nitrate [7] gave 3-cyano Py AD⁺ in 70 to 80% yields from thio-NAD⁺.

3-cyano Py AD⁺ has an absorption maximum in the U.V. at $\lambda_{\text{max}} = 259$ nm ($\epsilon = 17,100$). In an aqueous molar solution of potassium cyanide, a new absorption band appears at 322 nm ($\epsilon = 5,000$) and the absorption at 260 nm decreases ($\epsilon = 16,200$). In the presence of ethanol and YADH we notice two absorption bands: $\lambda_{\text{max}} = 324$ nm ($\epsilon = 3,900$) and $\lambda_{\text{max}} = 260$ nm ($\epsilon = 15,000$).

These spectroscopic results are compatible with a 1,4-dihydropyridine [8]. The 3-cyano Py AD⁺, like all 3-cyano pyridinium salts, is unstable in alkaline media [9].

The position of the redox equilibrium of 3-cyano Py AD⁺, determined by the oxidation of ethanol in the presence of YADH, was $K = 10^{-8}$ mole l⁻¹. We have determined the Michaelis constants of 3-cyano Py AD⁺ with LADH and with YADH. These are listed in table 1.

Table 1

NAD ⁺		3-Cyano Py AD+
YADH	1.5 × 10 ⁻⁴ mole l ⁻¹ (2.8 × 10 ⁻⁴ at pH 7.8 [10])	2.8 × 10 ⁻⁴ mole i ⁻¹
LADH	7.5 × 10 ⁻⁵ mole l ⁻¹ (7 × 10 ⁻⁶ [11])	1.4 × 10-4 mole 1-1

0.1 pyrophosphate buffer (pH 7.5) EtOH 0.2 M for YADH 0.02 M for LADH

The equilibrium constant for the redox equilibrium is higher than that of 3-acetyl Py AD⁺ (2.8×10^{-9} mole l^{-1}) [13], in agreement with the strongly electron withdrawing properties of the nitrile group.

The Michaelis constant of 3-cyano Py AD⁺ with YADH is close to that of NAD⁺. From this we concluded that either the contribution of the hydrogen bond of the group at position C-3 to the stability of the enzyme-coenzyme complex is weak or that the enzymatic group taking part in this bond does not have a rigid geometry. It can be estimated that the separation between the lone pair of the carbonyl C−C=O and the lone pair of the nitrile C−C≡N in NAD⁺ and its analogue, when the Pyridinium nuclei are placed in the same position, is of the order of 1 Å.

The Michaelis constant for NAD⁺ with LADH, as determined in this work, was about ten times greater than reported values (II), and is thought to be a result of the commercial enzyme preparation used; however the ratio K_m , NAD/ K_m 3-CN Py AD is about the same for LADH and YADH. The Michaelis constant for 3-acetyl Py AD⁺ is comparable to that of NAD⁺ with both enzymes [13]. Thus it seems that for the two enzymes studied, there is no absolute steric requirement for the 3-substituent on the coenzyme Pyridinium ring.

Experimental

The thio-NAD⁺ was prepared by the transglycosidation method [14] and freed from NAD⁺ by chromatography on Dowex-1.

The thio-NAD⁺ (200 mg), dissolved in acetate buffer 0.2 M (6 ml) pH 4.5, was treated with a 0.1 N silver nitrate solution in 1:1 methanol-water (6 ml). After a few minutes, 1 N HCl was added and the black precipitate was centrifuged. Desalting of the clear solution on Sephadex G-10 and chromatography on Dowex-1 HCOO- yielded 3-CN Py AD⁺ (eluted from Dowex using 0.3 N formic acid). Lyophilisation of eluate from Dowex gave a white solid which was shown to be pure by chromatography on a DEAE column.

The treatment of this product with NAD⁺ nucleotidase (pig brain) liberated 3-cyano Pyridine as detected by thin layer chromatography.

The 3-cyano Py AD⁺ is not very stable. Within a month at 4° C in solution at pH 6, a slow displacement of the λ_{max} of the dihydro species from 324 nm to 330 nm was observed. After the action of the nucleotidase, in addition to 3-cyano Pyridine, nicotinamide was also detected.

References

- [1] B.M.Anderson and N.O.Kaplan, J. Biol. Chem. 234 (1959) 1226.
- [2] A.Allerhand and P.V.R.Schleyer, J. Am. Chem. Soc. 85 (1963) 866.
- [3] P.Walter and N.O.Kaplan, J. Biol. Chem. 238 (1963) 2823 and references cited therein.
- [4] F.Schuber, unpublished results.
- [5] A.Schöberl and A.Wagner, Methoden der Organischen Chemie (Houben-Weyl) (Thieme, Stuttgart 1955) Vol. 9 p. 768.
- [6] G.Shaw and N.Butler, J. Chem. Soc. (1959) 4040.
- [7] K.Kindler, Ann. 450 (1926) 1.
- [8] K.Wallenfels and H.Schüly, Ann. 621 (1959) 106.
- [9] E.M.Kosower and J.W.Patton, Tetrahedron 22 (1966)
- [10] J.E.Hayes and S.F.Velick, J. Biol. Chem. 207 (1954) 225.
- [11] H.Teorell, A.P.Nygaard and R.Bonnichsen, Acta Chem. Scand. 9 (1955) 1148.
- [12] N.O.Kaplan, M.M.Ciotti and F.E.Stolzenbach, J. Biol. Chem. 221 (1956) 833.
- [13] J.D.Shore and H.Theorell, European J. Biochem. 2 (1967) 32.
- [14] B.M.Anderson, C.J.Ciotti and N.O.Kaplan, J. Biol. Chem. 234 (1959) 1219.